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Abstract
Objectives: There are a few accepted and intensively applied statistical methods used to study associations of ambient 
air pollution with health conditions. Among the most popular methods applied to assess short term air health effects are 
case-crossover (using events) and time-series methodologies (using counts). A few other techniques for studying counts of 
events have been proposed, including the Generalized Linear Mixed Models (GLMM). One suggested GLMM technique 
uses cluster structures based on natural embedded hierarchies: days are nested in the days of a week (dow), which, in 
turn, are nested in months and months in years (< dow, month, years >). Material and Methods: In this study the au-
thors considered clusters with hierarchical structures in a form of < dow, 14-days, year >, where the 14-days hierarchy 
determines 7 clusters composed of 2 days (the same days) of a week (2 Mondays, 2 Tuesdays, etc.), in 1 year. In this 
work the authors proposed hierarchical chained clusters in which 2 days of a week are grouped as follows: (first, second), 
(second, third), (third, fourth) and so on. Such an approach allows determination of an additional series of the slopes on 
the clusters (second, third), (fourth, fifth), etc., i.e., estimation of the coefficients for other configurations of air pollutant 
levels. The authors considered a series of 2 point chained clusters covering a year. In such a construction each cluster has 
one common data point (day) with another one. Results: The authors estimated coefficients (slopes) related to the ambient 
ozone exposure (mortality) and to 3 selected air pollutants (particulate matter, nitrogen dioxide and ozone) combined into 
index and considered as health risk exposure (emergency department (ED) visits). The generated results were compared 
to the estimations obtained from the time-series method and the time-stratified case-crossover method applied to the same 
data. Conclusions: The proposed statistical method, based on the chained hierarchical clusters (< dow, 14-days, year >), 
generated results with shorter confidence intervals than the other methods.
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INTRODUCTION
In studies of environmental epidemiology, there are 
a number of accepted statistical techniques used to 
estimate associations between ambient air pollution 
and health conditions, including the Generalized 
Additive Model (GAM) time series methods [1,2], 
Generalized Linear Mixed Models (GLMM) [3] and 

the commonly used, and widely accepted, case-cross-
over (CC) method [4,5].
The CC method uses individual events and is based on 
the case-control methodology. This design is useful when 
the risk exposure is both transient and has transitory occur-
rences. For each case, a period of time (case window) dur-
ing which the individual was considered a case is defined. 
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only with respect to one factor, which is air pollution level, 
thus, eliminating the time variable. The time is managed 
by clusters or, in the case of the CC method, by the time-
window (one month or others).
We know that 2 data points are necessary to uniquely deter-
mine a line. Consequently, we may consider the minimal hier-
archical structure of the form < dow, 14-days, year >, which 
has only 2 points in the second level, rather than the hierar-
chy based on one month, which uses 3 or 4 points. When ap-
plying the < dow, 14-days, year > approach we have a series 
of 2 point (day) clusters defined by year in the study period, 
as in the study of Szyszkowicz [3], with the years being con-
sidered independent of one another.
In this work we proposed a chained structure for 
such 2 point hierarchical clusters, so that 2 neighboring 
clusters, i.e., the 2 closest pair by time, always have one 
common day. For example: the first and second Monday 
in January and the second and third Monday in January 
are 2 separate clusters but with one common day, which in 
this case is the second Monday of January. Defining such 
a series of clusters for a given year, each particular day-of-
week is a member of 2 clusters – one in which it is the first 
temporal point (with a point following it), and one in which 
it is the second temporal point (with a point preceding it).
This is the same philosophy as that used by any cluster-
ing algorithm, except for the fact that we have deliberately 
used every possible temporal pairing of days-of-week, 
rather than offsetting by one as in the previous two-week 
(non-chained) cluster approach. By applying the mixed-
model regression to these two-point chained clusters, 
we expected to obtain more stable results than the moti-
vating technique by Szyszkowicz [3], as our sample size 
is two times larger. The proposed technique doubles 
the number of the constructed clusters.

MATERIAL AND METHODS
To compare the proposed method (chained clusters 
within a GLMM framework) with previously published 

Most frequently this window is just a single day: the day on 
which an event occurred. In a similar way, a period of time 
(the control window) in which the person was not a case is 
determined. Risk exposure during the case time-window 
is compared to the risk exposure during the control time-
window. In the CC design for individual cases, matched 
controls are also included, usually with a few days defined 
as controls for one case day.
The most popular technique for matching the controls is 
a time-stratified approach: for a given event day, the other 
days of the same day-of-week for a given month are con-
sidered as the control days [5]. In the case of such an ap-
proach we have 3 or 4 control days, depending on the par-
ticular calendar month, with the number depending on 
the particular day-of-week and length of a month for 
the considered calendar year (28–31 days). Thanks to such 
a design, modeling the effects of week days which must be 
accounted for in the time series methods may be avoided. 
In this paper we used the CC method as a baseline for 
comparison with the new proposed approach.
One of the possible methods for studying the count of 
events is the methodology based on the GLMMs [3]. This 
methodology was proposed to be used on naturally occur-
ring hierarchical clusters defined by a 12-month annual 
calendar. The following embedded structures were con-
sidered: days were grouped by days of a week (dow), then 
days of a week were grouped by month and the months 
were grouped by years, defining the structure < dow, 
month, year >, which organized the days of the study into 
hierarchical clusters. Such grouping is very similar to that 
used in the CC method: in both methods we would con-
sider the same days of a week in one month.
In general, in the domain of air pollution and health, we 
have 2 main (important and antagonistic) axis-factors: time 
and exposure. Both considered methods (the CC tech-
nique and GLMM based on hierarchical clusters) “cut” 
time into monthly segments. In the case of each such 
a chunk of time (one month), the regression is performed 
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of 4. For this mortality set, the size of the database was 
dictated by availability, with this set consisting of all time 
periods released by the Statistics Canada for the city of 
Toronto.
As a second set of health data set we used ED visits for 
problems starting during perinatal periods. The data 
were obtained from 5 hospitals in Edmonton, Alberta, 
Canada, and due to restriction dictated by availability of 
air pollution data and consistency of ICD coding, they 
were considered for the period between 17 April 1998 
and 31 March 2002 (1379 days). We used ICD-9 codes 760–
779 to identify cases in the database diagnosed as “certain 
conditions originating in the perinatal period,” including: 
birth trauma, hypoxia, infection and many others [9]. In 
total, we identified 2521 cases with the highest frequency 
occurring for ICD-9 code 774 (jaundice) with 1079 ob-
served number of cases (43% of total). Note that the tran-
sition to ICD-10 occurred after the end of the period of 
interest, so we did not require 2 sets of codes.
The results included in this work are not meant to repre-
sent scientific findings on ED visits, but are presented as 
an illustrative example for the use of the presented statis-
tical method: if other accepted methods provide similar 
results for associations between pollution and health, this 
strengthens the viability of the chained cluster approach. 
In addition, the considered in the study data set has been 
used in a previous study [8] and was found to be robust 
and interesting.

Air pollution data
For acute air pollution exposure and its association with 
mortality in Toronto, ambient ozone was considered. It has 
previously been observed to have strong associations [11–
14] with both all-cause and cardio-pulmonary mortality. 
The levels of exposure were calculated as the maximum 
of each day’s set of 8-h average concentrations. For these 
daily maximums, the mean level was 30.4 ppb, with stan-
dard deviation (SD) = 15.7 ppb, minimum = 0.7 ppb,  

approaches, we used 2 different health databases, with 
one set of data related to mortality, and the other set of 
data containing daily emergency department (ED) visits 
for certain conditions originating in the perinatal period. 
Both data are real.
The mortality data have been used in a number of other 
studies under the banner of the Air Health Indicator proj-
ect [6,7] and constitute a robust and well-understood data 
set. The data for ED visits were used as example data for 
an illustrative purpose only, with no claims as to biological 
viability, and are an extension of the data considered in 
the study of Zemek et al. [8].
We considered the daily counts of health events (number 
of deaths, number of ED visits) as health outcome mea-
surements. For the CC method we used individual events 
(deaths, visits) rather than their daily counts. Environ-
mental data, ambient air pollution and weather factors 
were also considered on a daily basis.

Mortality and ED data
Daily mortality counts recorded in Toronto, Ontario, 
Canada reported over the years 1984–2007 (24 year, 
or 8766 days), with primary cause of death related to 
cardio-pulmonary conditions were considered as epide-
miological health data. Mortality data were classified with 
an underlying cause of death encoded using the Inter-
national Classification of Diseases, 9th revision (ICD-9, 
World Health Organization (WHO) 1977), for deaths be-
fore 2000 and using ICD-10 (WHO 1992) for deaths regis-
tered from 2000 onward [9,10].
Under ICD-9, cardio-pulmonary mortality was considered 
to be a combination of circulatory and respiratory condi-
tions, with ICD codes 390–520. Under ICD-10, cardio-
pulmonary is considered to be all codes beginning with 
I or J, as well as a small number of G, M and R codes, on 
the basis of expert physician advice.
On average, Toronto experienced almost 20 deaths per 
day, with observed maximum deaths of 48 and minimum 
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Statistical method
The GLMM technique of Szyszkowicz [3] was applied 
to hierarchical clusters. Random intercept and fixed 
slope GLMMs were assumed in the constructed models, 
with the fixed slope assumed to be an underlying (shared) 
risk, and the random intercepts included to account 
for seasonal and other variations in the mean levels of 
the counts.
We generated clusters using a natural embedded structure 
of days in the calendar with the following 3-level hierar-
chies. In the first level of the hierarchy days are grouped 
by day of a week (dow). As the second level we consid-
ered 3 different cases:
– 1 month grouping – thus, 3 or 4 days,
– 2 weeks (14 days) – 2 days,
– 3 weeks (21 days) – 3 days.
These approaches were compared with the case, which is 
the main proposition of this paper:
– 2 weeks with a chained structure of the days.
In the chained structures, for each created cluster there 
exists another cluster paired to it, paired by one common 
day. In practice, we created 2 copies of our data (com-
posed of calendar days, health outcomes and air pollut-
ants) and in one copy we numbered each cluster by odd 
numbers (first 14 days get 1, next 14 days get 3, etc.). In 
the second copy we skipped the first 7 days (removed) 
and started to number the clusters by even numbers (the 
second and third week get 2, next 14 days get 4, etc.). 
We merged 2 files and the resulted file contains clusters 
labeled 1 and 2 with common second week, clusters la-
beled 2 and 3 have third common week, etc.
The CC method was implemented using the Cox propor-
tional hazard regression (PHREQ) procedure in the Sta-
tistical Analysis System (SAS) software environment, ver-
sion 9.3 [16]. The GLMMs were fit using the GLMM-penal-
ized quasi-likelihood (glmmPQL) function from the Modern 
Applied Statistics with S (MASS) [17] package for the R [18] 
environment for statistical computing, version 3.0.1.

and maximum = 111.4 ppb. In our study of mortality we 
used the same day exposure (lag 0) for ozone, as this lag 
was found to have a high association in previous studies.
In Edmonton (perinatal ED visits) we considered 3 ambi-
ent air pollutants (see [8] for a full description of air pol-
lutants in Edmonton), i.e., ozone, nitrogen dioxide (NO2) 
and particulate matter (PM2.5, no greater than 2.5 mi-
crons in diameter). These 3 pollutants have been shown 
by Zemek et al. [8] to have a significant association with 
otitis media, so considering their association with perina-
tal conditions is reasonable, and additionally have been 
combined to define a risk index known as the Air Quality 
Health Index (AQHI) [15].
This AQHI index is based on weighted values of the men-
tioned above air pollutant levels and was calculated 
hourly (24 values per day) based on a rolling three-hour 
pollutant concentration. In the estimation of an associa-
tion with ED visits, the risk index was represented as its 
daily mean, similar to the representation for the mortal-
ity data above. Previous research has shown that daily 
means are associated more strongly with childhood mor-
bidity data [8,14], as compared to daily minimums or 
maximums, which led us to choose the daily mean as our 
input in this model.
Our main goal in this paper was to present a new meth-
odology, thus, we used this risk index only as a proxy for 
exposure to a mixture of air pollutants. We considered 
a series of exposures to the risk index lagged 0–20 days. 
The risk index (RI) was calculated according to the fol-
lowing formula (obtained from the standard AQHI for-
mulation, see [15] for details):

 � �3eee
4.10

1000
RI 5.232 PM000487.0O000537.0NO000871.0 ���� ���  (1)

where:
NO2 – nitrogen dioxide,
O3 – ozone,
PM2.5 – particulate matter no greater than 2.5 μm in diameter.
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RESULTS
Mortality data
The results are presented in a form of 2 figures. Fig-
ure 1 and Table 1 show the results from the CC method 
and the GLMM method on chained hierarchical struc-
tures applied to mortality in Toronto, with the GAM an-
nual risks also plotted. The values were calculated for 
each year separately and Figure 1 represents correspond-
ing 24 years, each with a slope and 95% CI. Figure 2 shows 
more details concerning the years: 1984, 1993, 1996, 1998, 
and 2001. For these years, we present the results ob-
tained using 5 methods (GLMMs on 2 week clusters 
(W12), 3 week clusters (W123), chained 2 week clusters 
(W1223), month clusters, and the case-crossover method).
Figures 1 and 2 lead to 2 conclusions. The first (from Fig-
ure 1) is that the CC and W1223 (chained two-week clus-
ters) approaches are similar and track the GAM method 
from 1984 to the mid-to-late 1990s. After this point, 
all three methods start to diverge. This divergence has 
been observed before, and is a current topic of research, 
with no explanation for this phenomenon. As the GAM 
and CC methods are the two most common approaches 
for estimation of acute risk due to air pollution, the close 

We used temperature and relative humidity as weather fac-
tors, included via natural cubic spline links with 3 degrees of 
freedom (df). Statistical significance was assumed at the level 
of p-values < 0.05. The results for ED visits, produced using 
the CC models, were reported as odds ratios (OR) and their 
corresponding 95% confidence intervals (CI). The estimated 
values were presented for an increase of the risk index by one 
unit [14,15]. The results from the glmmPQL function were re-
ported as the coefficient (slope) related to the air pollutant of 
interest. Also for mortality data, the results from the CC mod-
els were presented in the same form. The 95% confidence in-
tervals were calculated for the estimated slopes.
In addition, for comparison purposes only, we estimated 
the annual risk due to ozone via a traditional generalized 
additive model (GAM) framework, in the style of the stud-
ies by Dominici et al. [1,2]. This approach (GAM) was 
considered for the purpose of comparing our new meth-
odology with a different statistical methodology, which 
accounts for time in a different fashion (via the smooth 
function of time inclusion). Formally, the model is (with 
temperature included in the model):

� � � � � �year/7df,timeS3df,tempSxylog
21t0t

��������  (2)

where:
log(yt) – Poisson distribution with E[Yt] = yt, where Yt are 
the daily number of counts,
β0 – an intercept,
βxt – the association between air pollution, a slope,
S1( ) – a natural cubic spline link with 3 df, and terms for 
day-of-week,
S2( ) – a smooth function of time (again a natural cubic regres-
sion spline with 7 df/year) also included, as is the standard ap-
proach. A Poisson family link was used.

The proposed method was also tested on 4 sets of simu-
lated data, created as in the study by Burr et al. [19] and 
compared with 8 different time-series methods.

1985 1990 1995 2000 2005
Year

β
(s

lo
pe

)

0.005

–0.005

0.000

0.009chain
CC
GAM

95% CI chain
95% CI CC
95% CI GAM

CC – case-crossover; GAM – generalized additive model; 
CI – confidence interval.

Fig. 1. Mortality in Toronto between 1984–2007
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developed to compensate for some of the variability issues 
of the CC approach (see [3] for details), and the W1223 
chained cluster GLMM appears to estimate the mean 
risk centered in the distribution of varying control group 
sizes (W12, W123, month), this promotes the result that 
the chain clustering approach can replace hierarchical clus-
tering methods, which have the issue of choosing the size 

agreement during the stable portion of time (1984–1995) 
is encouraging, and indicates that the new chained cluster-
ing method is viable with respect to the mean risk.
The second conclusion (from Figure 2) is that 
the W1223 method compares well with all the other 
clustered GLMM approaches. As the clustering ap-
proach is a simple alternative to the CC approach, 

Table 1. Estimated risks (slopes) and standard errors (SE) for the 3 methods (CC, chained clustering GLMM, and GAM), 
for Toronto, Ontario, 1984–2007*

Year
Method

CC chained clustering GLMM GAM
slope SE slope SE slope SE

1984 1.245×10–4 1.510×10–3 1.448×10–3 8.337×10–4 1.128×10–3 1.381×10–3

1985 –1.565×10–3 1.486×10–3 –7.893×10–4 8.441×10–4 –1.822×10–3 1.281×10–3

1986 5.292×10–4 1.225×10–3 5.678×10–4 6.695×10–4 4.181×10–4 1.172×10–3

1987 –3.501×10–4 1.397×10–3 1.235×10–3 7.410×10–4 4.124×10–4 1.240×10–3

1988 –8.374×10–4 1.483×10–3 –7.666×10–4 8.370×10–4 –8.690×10–4 1.305×10–3

1989 –1.832×10–3 1.622×10–3 –2.473×10–3 8.953×10–4 –1.761×10–3 1.426×10–3

1990 1.324×10–3 1.555×10–3 8.277×10–4 9.281×10–4 7.969×10–4 1.428×10–3

1991 –2.368×10–3 1.481×10–3 –2.132×10–3 7.848×10–4 –2.206×10–3 1.345×10–3

1992 –2.886×10–4 1.678×10–3 1.196×10–3 8.461×10–4 2.030×10–3 1.533×10–3

1993 5.337×10–3 1.719×10–3 4.189×10–3 8.190×10–4 3.739×10–3 1.578×10–3

1994 –2.717×10–3 1.503×10–3 –1.370×10–3 8.946×10–4 –2.736×10–3 1.385×10–3

1995 –3.233×10–3 1.581×10–3 –2.174×10–3 8.742×10–4 –3.608×10–3 1.510×10–3

1996 2.544×10–3 1.360×10–3 4.093×10–4 9.412×10–4 2.254×10–3 1.294×10–3

1997 3.599×10–4 1.564×10–3 4.810×10–5 1.003×10–3 –9.474×10–5 1.453×10–3

1998 –2.709×10–3 1.434×10–3 –5.300×10–5 9.288×10–4 –9.020×10–4 1.340×10–3

1999 –4.289×10–4 1.390×10–3 3.250×10–4 7.749×10–4 5.477×10–4 1.252×10–3

2000 1.936×10–3 1.615×10–3 3.900×10–5 9.852×10–4 5.196×10–4 1.461×10–3

2001 2.574×10–4 1.697×10–3 2.053×10–3 7.674×10–4 1.141×10–3 1.531×10–3

2002 –2.775×10–4 1.561×10–3 –4.760×10–5 8.396×10–4 –6.944×10–4 1.457×10–3

2003 2.546×10–4 1.657×10–3 –3.947×10–4 9.770×10–4 –5.265×10–5 1.582×10–3

2004 8.436×10–4 1.988×10–3 –3.522×10–4 9.778×10–4 –5.078×10–4 1.776×10–3

2005 –1.569×10–3 1.746×10–3 2.174×10–4 8.659×10–4 –2.130×10–3 1.618×10–3

2006 –9.851×10–4 1.933×10–3 9.460×10–5 8.844×10–4 –5.334×10–4 1.792×10–3

2007 –7.453×10–4 1.911×10–3 –2.085×10–4 1.079×10–3 –5.345×10–4 1.718×10–3

GLMM – the generalized linear mixed model.
Other abbreviations as in Figure 1.
* Models use ozone and cardio-pulmonary mortality as common elements.
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of all the 4 methods agree: positive risks in early lags, lead-
ing up to a significant association at and around 3–5 day-
lags, mostly zero association through lags 6–12, and 
then, a negative (possibly significant) association at and 
around lags 14–15. In addition, all three GLMM meth-
ods show a decreasing trend at lag 20, although we assign 
no interpretation to this. Finally, while the CC method 
indicates a positive and significant risk at lag 0, none of 
the GLMM methods agree, including the new chained 
cluster approach.
For lag 5 we included Table 2. It contains more detailed 
results from the GLMM used on chained two-week, 

of the second level. In other words, rather than estimat-
ing W12, W123, W1234 (or W-monthly), etc., and rather 
than examining the results year-by-year to determine their 
overlap, we can simply estimate W1223 (chained clusters) 
and have a reasonable estimate of their mean effect – that 
is, their mean risk. As the risk is the goal of this estimation 
procedure, this result is appealing.

Emergency department data
The results for perinatal ED visits in Edmonton are sum-
marized in Figure 3. The figure shows the results obtained 
using 4 different methods (the CC method and the GLMMs 
based on three types of clusters: one-month, two-week, 
and chained two-week) for a large range of lagged ex-
posures 0–20 days, presented as relative risks (RR) for 
one unit increase in the risk index. In general, the results 
agree quite well, with lags 3, 4 and 5 days being positive 
and significant (or nearly so) for all the 4 approaches. 
Similarly, lags 14 and 15 are negative and significant for 
the three GLMM methods, and negative (but not signifi-
cant) for the CC approach. In other words, the lag-trend 
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Other abbreviations as in Figure 1.

Fig. 2. Mortality in Toronto in the years 1984, 1993, 1996, 1998, 
and 2001
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17
18
19
20

Cluster – 2 weeks RR (95% CI) Cluster – chain RR (95% CI)

0.8 1 11.16 0.82 1.12

1.01 (0.96–1.06)
1.01 (0.96–1.06)
1.00 (0.95–1.05)
1.06 (1.01–1.12)
1.08 (1.03–1.13)
1.08 (1.02–1.13)
1.00 (0.95–1.05)
0.96 (0.90–1.01)
0.99 (0.94–1.04)
0.98 (0.92–1.03)
0.99 (0.94–1.05)
0.99 (0.93–1.04)
0.96 (0.90–1.01)
0.95 (0.89–1.00)
0.88 (0.82–0.93)
0.89 (0.84–0.95)
1.02 (0.96–1.07)
0.95 (0.89–1.01)
0.97 (0.91–1.03)
0.96 (0.90–1.01)
0.91 (0.86–0.97)

1.02 (0.95–1.10)
0.02 (0.94–1.09)
1.00 (0.92–1.08)
1.06 (0.99–1.14)
1.08 (1.01–1.16)
1.08 (1.01–1.15)
1.00 (0.93–1.08)
0.96 (0.89–1.04)
1.00 (0.92–1.07)
0.98 (0.90–1.06)
0.99 (0.92–1.07)
0.99 (0.91–1.06)
0.96 (0.88–1.04)
0.95 (0.88–1.03)
0.88 (0.80–0.95)
0.89 (0.81–0.97)
1.01 (0.94–1.09)
0.95 (0.88–1.03)
0.96 (0.89–1.04)
0.96 (0.88–1.03)
0.92 (0.84–1.00)

a)

b)

OR – odds ratio.
Other abbreviations as in Figure 1, Table 1 and 2.

Fig. 3. Emergency department visits in Edmonton: 
a) the CC method and GLMM on 1 month,  
b) GLMM on 2-week and chained 2-week
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to the lack of robustness of that method to seasonality. 
In fact, the two-point chained cluster method was com-
parable to the 12 df/year time-series method, while being 
comparable in complexity.

DISCUSSION AND CONCLUSIONS
The main goal of this work was to present a new statis-
tical method for estimation of air pollution effects on 
health, here measured as mortality and perinatal ED vis-
its. The proposed technique is inspired by a previously de-
veloped statistical methodology based on the GLMMs [3]. 
The main objective of this paper was to propose the pos-
sibility of using two-point chained clusters in the hierarchi-
cal cluster structures < dow, 2-week, year >. Fixed slope 
and random intercept GLMMs on the considered clusters 
were constructed and estimated.

two-week, and one-month clusters. The table presents es-
timated variances for the 3 levels of the hierarchical clus-
ters (e.g., dow, week, year). In parentheses with the vari-
ances their standard errors are included.

Simulated data
In addition, we tested our method using 4 sets of simulated 
data as originally developed in a recent paper of the sec-
ond author [19]. Estimating slopes (effectively, risks) for 
these 4 sets of realizations we obtained the results con-
tained in Table 3, with arithmetic average slopes and their 
standard deviation given, computed across 250 realiza-
tions for each simulation. In all the 4 cases the true slope 
was set to be β = 1.0. Our method out-performed the most 
commonly used time-series method (natural cubic spline 
time smoothers with 6 degrees-of-freedom per year) due 

Table 2. Detailed estimations for perinatal emergency department (ED) visits (lag 5 days)

Method Slope SE RR 95% CI
Variance

var-dow (SE) var-week (SE) var-year (SE)
W1223 0.074 0.027 1.077 1.021–1.135 0.052 (0.026) 0.026 (0.013) 0.003 (0.004)
W12 0.076 0.038 1.079 1.002–1.162 0.054 (0.037) 0.030 (0.018) 0.001 (0.004)
Month 0.078 0.038 1.081 1.004–1.165 0.051 (0.028) 0.015 (0.014) 0.001 (0.004)

SE – standard error of the slope; RR – relative risk (= exp(slope)); var – variance estimated (random effects) for the 3 levels of the clusters.
Other abbreviations as in Figure 1 and 2.

Table 3. Simulations (see [19]) for 3 models (NS(6), NS(12), and chains)*

Simulation 
NS(6) NS(12) Chains

M SD M SD M SD
Sim1 2.84×10–2 7.87×10–3 9.32×10–1 2.66×10–3 8.32×10–1 3.44×10–3

Sim2 6.42×10–2 4.82×10–5 8.37×10–1 4.35×10–5 7.60×10–1 4.00×10–5

Sim3 1.40×10–1 1.28×10–2 8.59×10–1 6.82×10–3 7.91×10–1 5.05×10–3

Sim4 –1.78×10–1 1.80×10–2 8.06×10–1 9.56×10–3 7.16×10–1 7.06×10–3

Sim – simulation; NS(6) – natural cubic regression splines with 6 degrees-of-freedom (df) per year; NS(12) – NS with 12 df/year.
M – mean; SD – standard deviation.
* For all 4 simulations the true slope is β = 1, and the presented mean and standard deviation are across 250 random realizations. The simulations are 
ranked in order of most seasonality; we clearly see that the NS time-series model with 6 df/year is not robust to this. By contrast, the chained CC meth-
od, while biased for all 4 simulations, is quite resistant to the contamination from seasonal effects, and is thus comparable to the NS time-series model 
with 12 df/year.
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org/10.1007/s11869-009-0029-z.

8. Zemek R, Szyszkowicz M, Rowe BH. Air pollution and 
emergency department visits for otitis media: A case-
crossover study in Edmonton, Canada. Environ Health 
Perspect. 2010;118(11):1631–6, http://dx.doi.org/10.1289/
ehp.0901675.
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death. 9th revision. Geneva: The Organization; 1977.
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fication of diseases and related health problems. 10th revi-
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11. De Almeida SP, Casimiro E, Calheiros J. Short-term asso-
ciation between exposure to ozone and mortality in Oporto, 
Portugal. Environ Res. 2011;111(3):406–10, http://dx.doi.
org/10.1016/j.envres.2011.01.024.

12. Stieb DM, Liu L. Air quality impacts on health. In: Taylor E, 
McMillan A, editors. Air quality management. Dordrecht: 
Springer; 2014. p. 141–66, http://dx.doi.org/10.1007/978-94-
007-7557-2_7.

13. Ito K, de Leon SF, Lippmann M. Associations between 
ozone and daily mortality: Analysis and meta-analysis. 
Epidemiology. 2005;16(4):446–57, http://dx.doi.org/10.1097/ 
01.ede.0000165821.90114.7f.

14. Szyszkowicz M, Tremblay N. Case-crossover design: Air 
pollution and health outcomes. Int J Occup Med Environ 

The results are generally comparable with previous meth-
ods, and are especially representative of the GLMM hi-
erarchical clustering methods. In particular, they solve 
the problem of choosing the period for the GLMM ap-
proach, as the results indicate that two-point chained clus-
ters well represent the average across common choices 
of period.
We conclude that the proposed method, i.e., the GLMMs 
on two-point chained clusters, may be used as an addi-
tional technique for estimating associations between air 
pollution and health outcomes, and in particular, is a suf-
ficient replacement for the GLMM clustering methods, 
as it avoids the issue of period choice. The method may 
be applied to confirm results obtained using other meth-
odologies such as the case-crossover or GAM time series 
approach, which is especially useful when considering 
changes in the risk over time, as many of those changes 
appear to act spuriously in one method only to be stable 
in another, the causes for which are an open topic of 
research.
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